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Abstract
The breakup phenomena of a vertical laminar jet issuing from a capillary
tube in quiescent ambient air are investigated. Using a linear approach to the
transient jet velocity, an approximate equation for the longitudinal motion of a
vertical liquid jet is theoretically derived. The instability analysis is performed
by a vibration method since the form of the equation resembles that of the
Rayleigh differential equation in a dynamic system. From the dimensionless
one-dimensional model, there are effects of the disturbance velocity on the
instability in a gravity-free environment. In contrast, the instability of the liquid
column is more affected by the disturbance velocity and the Bond number in a
gravity environment, which is verified by comparisons of the theoretical data
with the experimental frequencies. However, the effects of the surface wave
are considered to be dominant in the condition of the large magnitude of initial
disturbances by forces such as forced vibration

PACS numbers: 47.27.Wg, 02.30.-f, 47.20.-k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The major areas of current interest in the theoretical analysis of atomization are primarily the
stability of liquid columns and the disintegration of liquid jets. This is why these topics have
received a great deal of research attention. In a low-speed laminar jet, the causes of liquid
column instability might be turbulence, cavitation, boundary layer and velocity relaxation
effects. However, even though the overall jet integration is roughly understood, many details
need to be explored to provide a complete description of the phenomenon.
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Rayleigh [1] carried out the first stability analysis for both inviscid and viscous cylindrical
liquid columns in a vacuum. Weber [2] showed that the jet instability at high speed is affected by
aerodynamic forces acting on the liquid–gas interface. The aerodynamic effects of a stationary
liquid column in a moving gas stream were further investigated by Sterling and Sleicher [3]
and were found to be responsible for an enhanced growth of varicose disturbances. In
addition, Grant and Middleman [4] studied revised relations of Weber’s theory into the breakup
length. A low-viscosity liquid jet was also studied by Lafrance [5]. In contrast, the theory of
Castleman [6] suggests that the spray phenomenon is a developed and disintegrated disturbance
wave based on the interaction between the surface of the liquid column and the surrounding
gas.

Another study on the aerodynamic instability of a liquid column was performed by Taylor
and Levich [7]. The disintegration phenomenon of the Rayleigh breakup mode was investigated
using a nonlinear numerical analysis method through the boundary element method [8]. Li and
Shen [9] studied the convective instability. However, despite a large number of studies [10],
they were insufficient to account for the breakup phenomenon since the effects of the dominant
parameters associated with the breakup phenomenon are not regarded as significant causes of
breakup.

The present study begins with the experimental assumption [13,14] that the surface wave
is exponentially increased as the axial component of the disturbance velocity in the liquid jet is
increased at any point of the jet. The purpose of the present paper is to analyse the instability of
a liquid column due to the growth of the surface wave, disturbance velocities, surface tension
and gravity.

1.1. Review of Weber’s theory

Weber’s theory assumes that the radius of a liquid column R is disturbed by an axisymmetric
perturbation δ with the variation in distance z from nozzle. The perturbation can be written as
a Fourier series whose one component is of the form

δ(z, t) = η0 exp(αt + ikz) (1)

in which the growth rate α of the disturbance is calculated according to its wavenumber k. In
other words, the disturbance to the radius is periodic along the z axis and it grows monotonically
in time. η0 is the initial amplitude of perturbation.

Furthermore, Weber assumes that the jet evolves in a vacuum or at a low speed and that
both axial and radial stresses exerted by the surrounding environment can be disregarded. The
equation has the form

α2F1 + αF2
3µk̄2

ρLR2
= σ

2ρLR3
(1 − k̄2)k̄2 (2)

where µ is the viscosity of the liquid, ρL the liquid density, σ the surface tension and R the
radius of the liquid column. k represents the dimensionless wavenumber kR, and F1 and F2

are ratios of Bessel functions whose arguments include both α and k. On the other hand, the
general inviscid solution for growth rate α from Rayleigh instability analysis of the liquid jet
is as follows:

α2 = αk

ρR2
(1 − k2R2)

I1(kR)

I0(kR)
(3)

where I0 and I1 are first- and second-order Bessel functions.
The growth rate α of the surface wave of the liquid column becomes the maximum growth

rate αmax when the radius of the liquid column R is equal to the amplitude of the disturbance
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(a) (b)

Figure 1. Schematic of a vertical liquid jet. (a) Breakup model. (b) Geometric configuration.

wave δ at the breakup time tBU. That is to say

δ(0, tBU) = R = η0 exp(αmaxtBU). (4)

If the jet is travelling at a constant speed U0, the distance from the capillary exit at which
the first drops appear is LBU = U0tBU. The breakup length LBU can be expressed as the
multiplication of the breakup time by the jet velocity, i.e.

LBU =
(

U0

αmax

)
ln

[
R

η0

]
. (5)

Another approach to the linear analysis of this is given by Lee [11] as a growth rate α

parameter

α2 = σ

2ρR0

4π2

λ2

(
1 − 4π2

λ2
R2

0

)
(6)

where λ is the wavelength of disturbance wave, ρ the liquid density, and R0 the initial nozzle
radius.

2. Formulation for a longitudinal vibration model

Consider a vertical liquid jet ejected from the nozzle. Figure 1 shows the breakup model and
geometric configuration of a liquid column. The physical phenomenon can be solved by the
Navier–Stokes systems with the continuity equation in the cylindrical coordinate system. In
the present study, one-dimensional approximations to the equations for incompressible flows
with constant transport properties are applied, based on the idea that the radial velocity is
considerably small compared with the axial velocity in the cylindrical jet [12]. uz is assumed
to be the average axial velocity u(z, t) across the radius [11]. The equations can be expressed
as follows:

Continuity:

∂uz

∂z
+

1

r

∂(rur)

∂r
= 0 (7)
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z momentum:

ρ
∂uz

∂t
+ ρuz

∂uz

∂z
+
∂P

∂z
− µ

∂2uz

∂z2
− ρgz = 0. (8)

Now it is supposed that the jet has the uniform velocity U0, initial jet radius R0 and
wavelength λ just downstream in the capillary exit. Hence, the velocity of a vertical liquid jet
can be written as

uz = u(z, t) = U0 + v(z, t)

= U0 + u′(z)
dX

dt
= U0 + u′(z)Ẋ(t) (9)

where t is the time, z the distance from the nozzle, U0 the initial velocity of a liquid column,
v the velocity of the disturbance, u′ the axial component and the dimensionless magnitude of
the disturbance velocity, and Ẋ a time component of the disturbance velocity.

The radius R of the liquid column can be written as

R(z, t) = R0 + δ(z, t) (10)

where R0(z) is the initial jet radius and δ(t, z) the amplitude of the disturbance wave of a liquid
column. The continuity equation of (1) can be represented as

∂R2

∂t
+
∂(R2u)

∂z
⇒ ∂R

∂t
+ u

∂R

∂z
+
R

2

∂u

∂z
= 0 (11)

which is as derived by Lee [11].
For the inviscid jet, the pressure term is written in terms of the surface tension contribution

as

p = σ

(
1

RN
+

1

RT

)
. (12)

From the geometric relation of the radius of curvature on the surface of a liquid column, the
following expressions can be obtained:

RN = R
[
1 + (∂δ/∂z)2

]1/2
(13)

RT =
[
1 + (∂δ/∂z)2

]3/2

−∂2δ/∂z2
. (14)

We suppose that the variation of the deviation δ of the radius from the value R0 is a
small change near the nozzle exit. Actually, the approximations can be found experimentally
from a spectrum analysis [13,14] and theoretically from the study of liquid jet dynamics [11].
These studies show that the variation of the amplitude spectrum of the disturbance δ abruptly
increases only at the breakup region [13]. Hence, ∂δ/∂z is a very small slope except for the
breakup region.

For a small-amplitude disturbance, applying the assumption (∂δ/∂z)2 � 1 to
equations (13) and (14) gives

1

RN
≈ 1

R
= 1

R0 + δ
(15)

1

RT
≈ −∂2δ

∂z2
. (16)

When equations (15) and (16) are substituted into (12), the pressure term can be expressed as

p = σ

(
1

R0 + δ
− ∂2δ

∂z2

)
. (17)
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Substituting equations (9) and (10) into (11) and integrating (11) with respect to t yields∫
∂δ

∂t
dt +

∫
U0

∂δ

∂z
dt +

∫
u′ dX

dt

∂δ

∂z
dt+

∫
R0

2

du′

dz

dX

dt
dt +

∫
δ

2

du′

dz

dX

dt
dt = 0. (18)

Then

δ − δ0 +
∫

U0ikδ dt +
∫

u′ikδ
dX

dt
dt +

R0

2

du′

dz
X +

∫
δ

2

du′

dz

dX

dt
dt = 0. (19)

Equation (1) can be written as the following, using Euler’s identity:

δ = η0 exp(αt + ikz) = A(t){cos(kz) + i sin(kz)} (20)

where A(t) is η0 exp(αt).
Substituting equation (20) into (19) and rearranging the terms according to the real part

and imaginary part yields the following equation:

Real part:

(A − A0) cos(kz) −
∫

U0kA sin(kz) dt −
∫

u′kA sin(kz)
dX

dt
dt

+
R0

2

du′

dz
X +

∫
A

2
cos(kz)

du′

dz

dX

dt
dt = 0. (21)

Imaginary part:

(A − A0) sin(kz) +
∫

U0kA cos(kz) dt +
∫

u′kA cos(kz)
dX

dt
dt

+
∫

A

2
sin(kz)

du′

dz

dX

dt
dt = 0. (22)

Rearranging equations (21) and (22) yields, respectively,

(A − A0)

[
cos(kz) − U0k

α
sin(kz)

]
−

√
a2 + b2 sin(kz − φ)

×
∫

A
dX

dt
dt +

R0

2

du′

dz
X = 0 (23)

(A − A0)

[
sin(kz) +

U0k

α
cos(kz)

]
+

√
c2 + d2 sin(kz + φ̂)

∫
A

dX

dt
dt = 0 (24)

where

tan φ =
1
2 du′/dz

u′k
= βu′

2u′k
= β

2k
a = u′k b = 1

2 du′/dz

tan φ̂ = u′ku
1
2 du′/dz

= 2u′k
β u′ = 2k

β
c = u′k d = 1

2 du′/dz.

Combining equations (23) and (24) to eliminate the term
∫
A dX

dt dt produces

(A − A0) cos(kz − %

&) = −R0

2

du′

dz

X√(
1 + &U0k

α

)2
+

(
& − U0k

α

)2
(25)

where

sin(kz − φ)

sin(kz + φ̂)
= & tan

%

& = & − U0k

α

1 + &U0k

α

.
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If the imaginary part of equation (20) is deleted to attain the simplest analysis of jet [12], the
real part of δ is A(t) cos(kz). Therefore, the left-hand side term of equation (25) is considered

to be the real part of the disturbance amplitude term δ if the phase angle, − %

&, approaches zero.
At the same time, the right-hand side term of equation (25) becomes real if & approaches zero.
Equation (25) can be transformed into

δ = δ0 − R0

2

du′

dz

X√
1 +

(
U0k

α

)2 = δ0(z) − '
du′

dz
X(t) (26)

where

'(z) = R0

2
√

1 +
(
U0k

α

)2 .
Using Weber’s theory as mentioned above, the disturbance amplitude δ(z, t) of a liquid

column can be defined by equation (1) and the initial condition can be considered as

δ(z, t) : t = 0 → δ(z, 0) = δ0 = η0 exp(ikz)

δ(z, t) : z = 0, t = 0 → δ(0, 0) = δ0(0, 0) = η0
(27)

where the initial longitudinal displacement X(t) is

X(t) : t = 0 → X(t) = 0. (28)

The magnitude of the disturbance velocity, u′ can be written as

u′(z) = ς0 exp(βz) (29)

where ς0 and β represent the initial disturbance and the growth rate of the axial component of
the disturbance velocity. Inserting equations (9), (17), (26) and (29) into (8) results in

Ẍ + U0
u′|z
u′ Ẋ + u′|zẊ2 − v

u′|zz
u′ Ẋ − g

u′ +
σ

ρu′
[kη0 sin(kz) + 'u′|zzX]

[R0 + η0 cos(kz) − 'u′|zX]2

− σ

ρu′ [k
3η0 sin(kz) − 'u′|zzzzX] = 0 (30)

where the differential terms of u′ are as follows:

u′|z = βu′ u′|zz = β2u′ u′|zzzz = β4u′.

By examining the order of the sixth denominator term in equation (30), the equation can
be further simplified due to the fact that the magnitude of the initial disturbance η0 is too small
to either see or detect during the experimental action. Thus, the assumption that η0/R0 � 1
is valid. The sixth denominator term can be expressed as follows:

R0 + η0 cos(kz) − 'u′|zX ≈ R0 − 'u′|zX. (31)

Hence, equation (30) can be written as

Ẍ + U0βẊ + u′βẊ2 − vβ2Ẋ − g

u′ +
σ

ρu′
[kη0 sin(kz) + 'u′β2X]

[R0 − 'u′βX]2

− σ

ρu′ k
3η0 sin(kz) +

σ

ρ
'β4X = 0. (32)

Equation (32) is a second-order nonlinear ordinary differential equation. From the
parameters (ρ, σ, R0, U0) that characterize the jet, the following dimensionless variables can
be determined

x ≡ X

R0
t∗ ≡ t√

ρR3
0/σ

. (33)
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The following result of the sixth denominator term can be arranged from equation (26):

−'u′βX = δ − δ0. (34)

As we noted earlier, we assume that the variation in the perturbation δ is considerably
small along the nozzle exit. According to equations (1) and (27), the difference between δ and
δ0 is significantly small, compared with R0:

R0 − 'u′βX = R0 + δ − δ0 ≈ R0. (35)

Hence, equation (32) can be simplified in a dimensionless form

ẍ + βR0
(√

We − βR0Oh
) [

1 +
u′

(
√

We − βR0Oh)
ẋ

]
ẋ

+'R0β
2(1 + R2

0β
2)x +

(1 − k2R2
0)

u′ kη0 sin(kz) − Bo

u′ = 0 (36)

where

Weber number: We = ρU 2
0R0

σ

Ohnesorge number: Oh = µ√
σR0ρ

Bond number: Bo = ρgR2
0

σ
.

The form of equation (36) is

ẍ + a(1 + bẋ)ẋ + wnx + s = 0 (37)

which is similar to the Rayleigh equation. The instability condition is determined based on
whether the coefficient, a(1 + bẋ), of the damping term is less than zero. For an inviscid fluid
(µ = 0), βR0Oh ≈ 0. The coefficient of the damping term in equation (37) is

ẋ = −
√

We

u′ . (38)

Combining equations (33) and (38) yields

v

U0
= −1. (39)

From equations (9) and (39), u becomes zero. Physically, this means that there exists a
force acting in opposition to the axial direction at a breakup time.

Therefore, the initial conditions and the boundary condition are

ẋ(0) = x(0) = 0 ẋ(t∗BU) = −
√

We

u′ . (40)

Differentiating equation (37) with respect to t∗ produces

x + a(1 + 2bẋ)ẍ + wnẋ = 0 (41)

which does not involve gravity terms.
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Figure 2. Distributions of characteristics with the variation in u′ in a gravity-free environment.
(a) Distributions of the dimensional position with the variation in u′. (b) Distributions of the
dimensionless displacement with the variation in u′. (c) Distributions of a dimensionless time
component of the disturbance velocity with the variation in u′. (d) Occurrence of breakup with the
increase in u′.

3. Discussions and results

Numerical investigations were performed into distributions of characteristics with the
variations in u′ and s in gravity-free and gravity environments to warrant the formulations
of the breakup model. Water at a temperature of 22 ◦C is utilized as a working fluid. The
fourth-order Runge–Kutta method is used in solving the ordinary differential equations.

Figure 2 denotes the solutions of equation (37) for the gravity-free environment using the
boundary conditions in equation (40). The calculations are performed under the assumption
that the working fluid is water. The distributions of the longitudinal position according to
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the changes in u′ are shown in figure 2(a). In this figure, the large value of u′ equates to an
increase in the distance from the nozzle since u′ is a function of the distance z in equation (29)
in regards to the small initial disturbance ς0 of u′. Note that the location in which u′ is 0.1
indicates the position near the nozzle. On the other hand, the distance at 8 mm away from
the nozzle represents the place of u′ = 0.6 where a drop is on the verge of breaking up.
Figure 2(a) indicates that the distributions of the longitudinal position form similar shapes,
respectively, at different distances from the nozzle. This indicates that with increase in u′,
wavelengths are increased slightly. Figure 2(b) shows distributions of the dimensionless axial
displacement with the variation in u′ and time. Changes in u′ represent those of the initial
disturbance ς0 at the same position of z. The axial displacement of the surface wave is slightly
increased with respect to time as the initial disturbance ς0 increases. In other words, there
is a small effect of the initial disturbance ς0 on the instability in a gravity-free environment.
Figure 2(c) demonstrates the distributions of a time component of the disturbance velocity
according to changes in the initial disturbance ς0 of u′ at the same position. These changes
of the disturbance velocity v increase gradually as the changes in the initial disturbance ς0 of
u′ increase. It is recognized in figure 2(d) that the breakup occurs at t∗ = 4 since there is no
variation in the disturbance velocity ẋ with respect to changes in time.

When equation (36) is compared with equation (37), the parameter s can be written as

s = (1 − k2R2
0)

u′ kη0 sin(kz) − Bo

u′ (42)

which plays a role in increasing the instability. Moreover, the first term of equation (42) has
the dimensionless parameter kR0 which affects the instability of the liquid jet, depending on
whether kR0 < 1 or kR0 � 1. In the areas in which the surface wave increases, that being
when η0 is large, the profile of the surface wave disturbance follows a sine curve according
to the distance z from the nozzle. If the order of magnitude of the initial disturbance η0 of
the surface wave is considerably small, the parameter s can be expressed as the ratio of Bond
number to u′. Thus, s is inverse to the distance z from the relation s ≈ Bo/u′.

Figure 3 shows the distributions of characteristics for different values of the parameter s in
a gravity environment. In figure 3(a), the dotted and solid curves represent the trajectories of the
points on the surface wave depending, respectively, on whether the magnitude of disturbance
velocity u′ is constant or not. Figure 3(a) shows how the distributions of the solid curves
have similar tendencies with the variation in s compared with those found in figure 2(a) where
the parameter s is neglected. However, the trajectory of s = 0.28 is different from the actual
trajectory which would be the dotted line of s = 1.7. The difference of the wavelength is due to
the effect of the Bond number. The distributions of the disturbance displacement and the time
component of the disturbance velocity increase at the same position as s increases as shown
in figures 3(b) and (c). Figure 3(b) shows how the surface wave is elongated with an increase
in the Bond number. This can be also ascribed to how the Bond number is proportional to
the volume which is that of the pendent drop just before a part of that drop falls away from
the nozzle [12]. This could also be attributed to how the elongation of the surface wave is
increased as the weight of the pendent drop is increased. Figure 3(c) demonstrates that the
effects of the Bond number become larger as the disturbance velocity v becomes larger. This
can be explained by the fact that the disturbance velocity is accelerated due to the increase in the
weight of the pendent drop. However, the contribution of the surface wave to the dimensionless
parameter s may be considered to be dominant in the condition of the large magnitude of the
initial disturbance η0, such as the forced vibration.

The high-speed photographs taken at intervals of 400 Hz under the same condition as the
calculated case are shown in figure 4. The solid and dotted curves as shown in figure 3(a)
are compared with the trajectories of the points in the experiment. It is found that the actual
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Figure 3. Distributions of characteristics with the variation in parameter s in a gravity environment.
(a) Distributions of trajectories at different positions (solid curves) and same positions (dotted
curves) with the variation in s. (b) Distributions of the dimensionless displacement with the
variation in s at the same position. (c) Distributions of a dimensionless time component of the
disturbance velocity with the variation in s at the same position.

phenomena in figure 4 are similar to profiles of the solid curves of the surface waves according
to the changes of u′. The picture shows that the thin dotted line would be the trajectory
in a gravity-free environment. However, the actual trajectory in a gravity environment is
represented by the thick dotted line. The difference of wavelength is due to the Bond number.
It is observed in figure 4 that as water issues vertically from a capillary with an inside diameter
D of 2.2 mm, the wavelength shows λBU of 10 mm during 20 ms where λBU agrees well with
the Rayleigh or Weber theory [1, 2]: λBU ≈ 4.51D.

Note that the wavelength of the surface wave almost did not change with the variation
of u′ near the nozzle exit, this being the physical phenomenon occurring in the gravity-free
environment.
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4 8 12 16 20

Time

z

Figure 4. Comparisons of the theoretical data figure 3(a) with high speed photographs taken at the
photographic interval of 400 Hz (at the break-up interval of 50 Hz).

Therefore, the variation of the Bond number plays a dominant role in increasing the
wavelength of the vertical jet near breakup point. The pendent drop moves 10 mm downward
during 20 ms at the breakup region as shown in figure 4, meaning that at this position the
pendent drop is more subject to Bond number effects than at any other position.

Figure 5 demonstrates the experimental frequencies of surface waves on a liquid column,
thus presenting comparisons of the experimental data with the theoretical data. Figure 5(a)
shows the frequency spectra at various positions from the nozzle exit. Figure 5(b) shows the
monotone contour intensity expression of the spectrum obtained from figure 5(a). The circle
marks indicate the theoretical frequencies with respect to z while the solid curves denote the
fitting curve of the frequencies obtained using the theoretical frequencies data. The curve of
the theoretical frequencies falls within the experimental frequency spectrum [14] ranging from
20 and 80 Hz at the breakup point z = 20 mm.

4. Conclusions

In this paper, a theoretical model of a liquid jet for the absence of aerodynamic effects in the
Rayleigh instability region has been obtained. A longitudinal model of the jet somewhat
resembles that of the Rayleigh ordinary differential equation in a dynamic system. In a
gravity-free environment, the wavelength increases with the increase of u′. Distributions of
the trajectories in a gravity environment have similar tendencies to the variation in s compared
with those in a gravity-free environment. When on the verge of breaking up, wavelengths
between the gravity and gravity-free environments vary due to the effects of the Bond number.
The result is verified comparing the analytical solution of a dimensionless 1D model of the
liquid jet column with the picture taken and experimental data. The instability of the jet in the
laminar flow region is more affected by the disturbance velocity, the initial disturbance of the
jet and Bond number than by any other factors. However, the surface effects can be considered
to be dominant in the large magnitude condition of the initial disturbance by forces such as
forced vibration.
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Figure 5. Experimental frequencies of surface waves on liquid column. (a) Spectrum structure of
surface waves on liquid column. (b) Monotone intensity of the spectrum.
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